
The Code Hoover
a close look on clean code

Andreas Wintersteiger

@awintersteiger | hello@mpirics.com



Why?

Time

Cost of Change



Fear Driven Development

Hate Driven Development

Bad Codebase



Ultimate GOAL

„Changeable“ Software



Example 1: what‘s ugly here?

How would you feel if you are supposed to change that code?



What is „Clean Code“



What resembles „clean“ code?

• Meaningful names
• Methods/Functions
• Small, obvious and telling a story
• Do only one thing and do it well without any side effects
• Command-Query separation
• niladic and monadic, then dyadic, avoid more than two arguments
• Avoid output parameters
• Exceptions instead of error codes

• Comments are failures to express in code



Principles for writing good code - design

• Principle of least Astonishment
• DRY – don’t repeat yourself
• KISS – Keep it simple, stupid!
• Separation of Concerns
• Avoid Premature Optimization
• Favor Composition over Inheritance (FCoI)
• TDA - Tell, don’t ask!
• Law of Demeter
• Information Hiding Principle
• YAGNI – you ain’t gonna need it



Example 2

Code cannot be shown in print mode



Example 3



Example 4

BANK2i_TEAM















Example 5



Example 6



Example 7



Clean Code is essential, put it into the center!

... but only one small contribution to becoming agile:

• Coding Culture (e.g. Broken Window Syndrome)
• Test Automation & TDD
• Continuous Refactoring
• Measure technical debt
• Hoover the code daily!

TRANSPARENCY ABOUT THE CODE BASE‘S STATUS


