
Test-Driven Development

Why, How and Strategies for Success

Gustav Boström
gustav.bostrom@crisp.se

Definition of TDD

l  What is TDD?
l  Tests drive the design of the system
l  The process:

-  Failing test
-  Functioning test
-  Refactoring
-  Repeat

l  Tests are written first

Why TDD?
l  Your safety net
l  No tests -> Fear of change -> No Agility
l  Fosters good design
l  Saves resources

l  Manual testing
l  Less superfluous code (YAGNI)

l  Gives you a good nights sleep before release!

Different kinds of tests

l  Unit Tests
l  Integration Tests
l  Acceptance Tests

Unit tests

l  Tests a specific component independently of it’s
environment

l  Makes assumptions on the behaviour of
surrounding components

l  Technically oriented
l  Runs fast
l  Xunit frameworks

l  A xUnit-test is NOT automatically a unit test
”Never in the field of software development have so many owed so
much to so few lines of code”, Martin Fowler speaking of JUnit

Mocking and stubbing
l  Short-circuit surrounding components and

simulate behaviour
l  Necessary to make proper unit tests
l  Frameworks examples:

l  Mockito (Java)
l  Moq (.Net 3.5)

Mockito example
import static org.junit.Assert.*;
import org.junit.Test;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.verify;

public class TestForeignTransfer {

 @Test
 public void performForeignTransfer () {
 Account account = new Account();
 account.setBalance(1000);
 ForeignTransferFacade foreignTransferFacadeMock =

mock(ForeignTransferFacade.class);
 account.setForeignTransferFacade(foreignTransferFacadeMock);

 String ibanNumber = "CZ676676766767667";
 account.depositToIBANNumber(500,ibanNumber);
 assertEquals(500,account.getBalance());
 verify(foreignTransferFacadeMock).deposit(500, ibanNumber);
 }

}

Integration Tests

l  Tests that test several integrated components
together

l  Example: Tests with calls to the database
l  Often also written using a xUnit-framework
l  Special frameworks available. E g: dbUnit
l  OK if they are long-running

Acceptance Tests

l  Tests expressed in a language your customer
understands – Business oriented

l  A Communication Tool first – Testing second
l  Executable specifications

l  Concordion
l  FIT/FITnesse
l  Robot Framework
l  Cucumber

Source: Whitney Hess

Concordion example

Concordion Example – Making the
specification executable

<div class="example">

 <h3>Example</h3>

 <p>
 The full name
 John Smith
 will be broken into first name
 John
 and last name
 Smith.
 </p>

 </div>

Concordion Example – Making the
specification executable

package example;

import org.concordion.integration.junit4.ConcordionRunner;
import org.junit.runner.RunWith;

@RunWith(ConcordionRunner.class)
public class SplittingNamesTest {

 public Result split(String fullName) {
 Result result = new Result();
 String[] words = fullName.split(" ");
 result.firstName = words[0];
 result.lastName = words[1];
 return result;
 }

 class Result {
 public String firstName;
 public String lastName;
 }
}

TDD and Continuous Integration

l  Test as soon as the code has changed
l  -> Quick feedback -> Less energy spent on fixing
l  Demands fast execution of tests

l  Automate running of the test suite
l  Run tests before check-in to SCM
l  Red lamp when it fails for communication

USB- or Ethernet-controlled power sockets

TFS

Strategies for success

Strategy Skills Measure Love

Create a Test Strategy - Case study

l  Agile organization
l  10 developers
l  No testers
l  1 Product Owner
l  New production release every 2 weeks

Background

l  A large refactoring demanded higher test
coverage
l  Needed coverage for the courage to change

l  Current test coverage around 20%

The System

l  CRM
l  Web application

l  Spring
l  Layered architecture

l  Web
l  Service
l  Data access layer

l  Integration with external systems

Test Strategy

l  Strive for 100% test coverage of backend-code
helped by unit tests and mocking framework

l  Test each layer on it’s own
l  Database layer tested with integration tests
l  Critical User Stories tested using

Acceptancetests expressed in text and tables
l  User interface mainly tested by manual

exploratory testing

Sample workflow

l  Write Acceptance test
-  Product owner writes text
-  Developers make the test executable

l  Write Unit tests for backend components, mock
subcomponents (Like the Database components)

l  Write Integration tests for Database Components
l  Check-in when tests are green

-  IntelliJ/TeamCity Remote Run does this automatically

In Paralell

Learn the skills - How to start

•  Learn a Unit test framework
•  Start with unit testing new code
•  Pair program with those who know
•  Automate in your Continuous Integration

platform
•  Write tests when making changes to old code

(You will discover why there are benefits with
Test First …)

•  Improve communication with customers through
Executable Specification tests

Measure test coverage wisely

l  How do you know you’ve tested enough?
l  Which tests test what parts of the code?
l  Tools:

l  Clover (Java)
l  Emma (Java)
l  NCover (.Net)
l  Dot Cover (.Net)
l  Testdriven.NET (.Net)

What test coverage is acceptable?

•  If you develop ”Test first” you automatically get
good coverage. Not unfeasible to acheive
close to 100% with little effort.

•  Prioritize the coverage on the most important
parts

•  Look at the complexity
•  Which parts change the most?
•  Which parts break the most?

Clover and Emma example

Love your test suite like it was your
code

•  Your tests need love and nurturing or else they
will die
•  Refactor and remove duplication
•  Fix or remove broken tests immediately

•  Give them lots of exercise
•  Run them as much as practical in CI
•  Keep them fit and fast

Love your testers too

•  The right tool for the job
•  Testing is a profession – You can learn from it
•  If it’s too hard to automate, maybe it’s not worth

it

Referenser
l  Working effectively with Legacy Code, Michael Feathers

l  Continuous Delivery, Jez Humble, David Farley

l  Clover test coverage tool,
http://www.atlassian.com/software/clover/

l  Emma test coverage, http://emma.sourceforge.net/

l  Testdriven.NET, http://testdriven.net/

l  Nunit, http://www.nunit.org/

l  Selenium, http://seleniumhq.org

l  Concordion, http://www.concordion.org/

l  Moq, http://code.google.com/p/moq/

l  Mockito, http://mockito.org/

