
Patterns for 
the People 

@KevlinHenney 
kevlin@curbralan.com 





I don't make stupid mistakes. 

Only very, very clever ones. 

John Peel 



Failure is a far better teacher 

than success. 

 

 

 

 
Philip Delves Broughton 

http://www.ft.com/cms/s/0/f33f5508-f010-11e0-bc9d-00144feab49a.html 



If you want to learn how to build a 

house, build a house. Don't ask 

anybody, just build a house. 

Christopher Walken 









Programming is difficult 

business. It should never 

be undertaken in ignorance. 

Douglas Crockford 
JavaScript: The Good Parts 



What experience and 
history teach is that 
nations and governments 
have never learned 
anything from history. 

Georg Wilhelm Friedrich Hegel 





Wise men profit more from 
fools than fools from 
wise men; for the wise 
men shun the mistakes of 
fools, but fools do not 
imitate the successes of 
the wise. 

Cato the Elder 



Mark Pagel at the University of Reading, UK, doubts that 
hominins before Homo sapiens had what it takes to innovate 
and exchange ideas, even if they wanted to. He draws a 
comparison with chimps, which can make crude stone tools 
but lack technological progress. They mostly learn by trial 
and error, he says, whereas we learn by watching each other, 
and we know when something is worth copying. 
 
 

 
 
 
 
 

http://www.newscientist.com/article/mg21328571.400- 
puzzles-of-evolution-why-was-technological-development-so-slow.html 



One of the hallmarks 

of architectural 

design is the use of 

idiomatic patterns of 

system organization. 

Many of these 

patterns — or 

architectural styles 

— have been 

developed over the 

years as system 

designers recognized 

the value of specific 

organizational 

principles and 

structures for certain 

classes of software. 









We know that every pattern is an instruction of the general form: 

context  conflicting forces  configuration 

So we say that a pattern is good, whenever we can show that it 
meets the following two empirical conditions: 

1. The problem is real. This means that we can express the 
problem as a conflict among forces which really do occur 
within the stated context, and cannot normally be resolved 
within that context. This is an empirical question. 

2. The configuration solves the problem. This means that when 
the stated arrangement of parts is present in the stated 
context, the conflict can be resolved, without any side effects. 
This is an empirical question. 





The "defined" process control 

model requires that every 

piece of work be completely 

understood. Given a well-

defined set of inputs, the 

same outputs are generated 

every time. 



The empirical process control 

model, on the other hand, 

expects the unexpected. It 

provides and exercises control 

through frequent inspection 

and adaptation for processes 

that are imperfectly defined 

and generate unpredictable 

and unrepeatable results. 



SCRUM: A Pattern 

Language for 

Hyperproductive 

Software 

Development Teams 

 
Mike Beedle, Martine Devos, 

Yonat Sharon,Ken Schwaber, 

and Jeff Sutherland 



SCRUM Master 

Sprint 

Backlog 

SCRUM Meetings 

Demo After Sprint 

SCRUM Master 

Sprint 

Backlog 

SCRUM Meetings 

Demo After Sprint 



Problem 

You want to balance the needs of developers to 

work undisturbed and the needs of 

management and the customer to see real 

progress, as well as control the direction of 

that progress throughout the project. 

Solution 

Divide the project in Sprints. A Sprint is a 

period of approximately 30 days in which an 

agreed amount of work will be performed to 

create a deliverable. Each Sprint takes a pre-

allocated amount of work from the Backlog... 

Sprint 



Jason Yip 

http://martinfowler.com/articles/itsNotJustStandingUp.html 



Jason Yip 

http://martinfowler.com/articles/itsNotJustStandingUp.html 





Developer Controls Process 

Place the Developer role at a hub of the 

process for a given feature. A feature is a 

unit of system functionality, implemented 

largely in software, that can be separately 

marketed and for which customers are 

willing to pay. The Developer is the 

process information clearinghouse. 

Responsibilities of Developers include 

understanding requirements, reviewing 

the solution structure and algorithm with 

peers, building the implementation, and 

unit testing. 

A Generative Development-Process Pattern Language 

James O Coplien 



EPISODES: 

A Pattern 

Language of 

Competitive 

Development 

 
Ward Cunningham 








