N ;

Patterns for -

~ the People

@Kevl i'n'Hei&hA_n ey' o

kevlin@curbralan.com

PA TTERN-ORIENTED
SOF TWARE

ARCHITEC TURE

A Patterp Language g9,
Distributey ummllllm

Frank Buschmann
Keviin Henney
Douglas ¢ Schmidt

< don't make stupid mistakes.
Only very, very clever ones.

</ohn Peel

Failuve is a far better teacher
than success.

Philip Delves JRroughton

hetp://www.ft.com/ems/s/O/f335508-fO10-11e0-hc9d-0014 4feab49a.hitm!

JF you want to learn how to build a
house, build a house. Don't ask
anghody, just build a house.

Chvistopher Y4/alken

Ecce Homo de Etias Garcia Martinez.

Ecce Homo de Etias Garcia Martinez.

Ecce Homo de Etias Garcia Martinez.

JPIrogramming is difficalt
business. Jt should never
be undertaken in ignovance.

Qouglas Crockford
=sava Script: The Good flarts

What experience and
history teach 1is that
nations and governments
have never learned
anything from history.

Georg Wilhelm Friedrich Hegel

Home Profile Find People Settings Help Sign out

Software development can only be
considered immature because of how we
use our experience, not because we lack
experience.

Kevlin Henney

© 2010 Twitter About Us Contact Blog 5Status Goodies APl Business Help Jobs Terms Privacy

Wise men profit more from
fools than fools from
wise men; for the wise
men shun the mistakes of
fools, but fools do not

imitate the successes of
the wise.

Cato the Elder

Mark Pagel at the University of Reading, UK, doubts that
hominins before Homo sapiens had what it takes to innovate
and exchange ideas, even if they wanted to. He draws a
comparison with chimps, which can make crude stone tools
but lack technological progress. They mostly learn by trial
and error, he says, whereas we learn by watching each other,
and we know when something is worth copying.

http://www.newscientist.com/article/mg21328571.400-
puzzles-of-evolution-why-was-technological-development-so-slow.html

One of the hallmarks

SOF T ‘WA RE of architectural
ARCHITECTU RE design is the use of

PERSPECTIVES ON AN EMERGING DISCIPLINE idiomatic patterns of
MARY SHAW DAVID GARLAN

system organization.
Many of these

patterns — or
architectural styles

— have been :
developed over the
years as system
designers recognized
the value of specific
organizational
principles and... e
structures for certain
classes of software.

-

,

PATTERNS FOR

WHERE CODE AND CONTENT MEET

PARALLEL SOFTWARE DESIGN

b

)
.
-
",
-

-

Gamma * Helm *

Johnson * Vii

v,

Desien Patterns CD

-

' u : h NARRISON Foore RONNERT

AV Vi
- £
R 10 A] 1

- MARTIN / RIENLE / BUSCHMANN < mm
5 i

. -

Ear Frocnan EMGRRC WY

z*mnz ‘lbaa EOITED BY

ot h S WS
SERVER COMPONENT - P
PATTERNS Bodll (2;

Component Infrastruciures

. ; .g [COPLTEN"
©. @F PROGRAM DESIGN), ScHmiDy

REMOTING PATTERNS

A PATTERN APPROACH

TO INTERACTION DESIGN
ARCHITECTING ENTERPRISE
SOLUTIONS

SECURITY PATTERNS

Integrating Securily and Systems Engine

PATTERN-ORIENTED
SOFTWARE ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE ARCHITECTURE

PATTERN-ORIENTED
SOFTWARE ARCHITECTURE

PATTERN-ORIENTED - P
SOFTWARE ARCHITECTURE <= Ko

— T —— —

CTRTrea A SYSTEM OF

b,

1
H

i

i
xn
"

| A =)
e
:-
[G |
G5 -
| O
L

]

L=

e st el

The
Timeless Way of
Building

Christopher Alexander

We know that every pattern is an instruction of the general form:
context - conflicting forces — configuration

So we say that a pattern is good, whenever we can show that it
meets the following two empirical conditions:

1. The problem is real. This means that we can express the
problem as a conflict among forces which really do occur
within the stated context, and cannot normally be resolved
within that context. This is an empirical question.

2. The configuration solves the problem. This means that when
the stated arrangement of parts is present in the stated
context, the conflict can be resolved, without any side effects.
This is an empirical question.

Agile Software
Development
with Scrum

red

yellow
green

blue

red

- blue
yellow
green

blue

Color Test

Ken Schwaber =s=s Mike Beedle

The "defined" process control
model requires that every
piece of work be completely
understood. Given a well-
defined set of inputs, the
same outputs are generated
every time.

The empirical process control
model, on the other hand,
expects the unexpected. It
provides and exercises control
through frequent inspection
and adaptation for processes
that are imperfectly defined
and generate unpredictable
and unrepeatable results.

HARRISON

"FOOTE

Edited by

NEIL HARRISON
!
BRIAN FOOTE

HANS ROHNERT

SOFTWARE PATTERNS SERIES

Sprint
Problem

You want to balance the needs of developers to
work undisturbed and the needs of
management and the customer to see real
progress, as well as control the direction of
that progress throughout the project.

Solution

Divide the project in Sprints. A Sprint is a
period of approximately 30 days in which an
agreed amount of work will be performed to
create a deliverable. Each Sprint takes a pre-
allocated amount of work from the Backlog...

It's Not Just Standing Up: Patterns for
Daily Standup Meetings

photo: Karthik Chandrasekarial

Daily stand-up meetings have become a common ritual of many teams, especially in Agile
software development. However, there are many subtle details that distinguish effective
stand-ups and a waste of time.

Jason Yip
http.//martinfowler.com/articles/itsNotJustStandingUp.html

Who attends?
All Hands
Work Items Attend
What do we talk about?
Yesterday Today Obstacles
Improvement Board
What order do we talk in?
Last Arrival Speaks First
Round Robin
Pass the Token
Take a Card
Walk the Board
Where and when?
Meet Where the Work Happens
Same Place, Same Time
Use the Stand-up to Start The Day
Don't Use the Stand-up to Start the Day
How do we keep the energy level up?
Huddle
Stand Up
Fifteen Minutes or Less
Signal the End
Time the Meetings
Take it Offline
How do we encourage autonomy?
Rotate the Facilitator
Break Eye Contact

How do we know when a stand-up is going poorly?

Focused on the Runners, not the Baton
Reporting to the Leader

People are Late

Stand-up Meeting Starts the Day... Late
Socialising

| Can't Remember

Story Telling

Problem Solving

Low Energy

Obstacles are not Raised

Obstacles are not Removed

Obstacles are Only Raised in the Stand-up

Jason Yip
http.//martinfowler.com/articles/itsNotJustStandingUp.html

% PATTERN

LANGUAGES
OF
PROGRAM DESIGN

Developer Controls Process

Place the Developer role at a hub of the
process for a given feature. A feature is a
unit of system functionality, implemented
largely in software, that can be separately
marketed and for which customers are
willing to pay. The Developer is the
process information clearinghouse.
Responsibilities of Developers include
understanding requirements, reviewing
the solution structure and algorithm with
peers, building the implementation, and
unit testing.

A Generative Developrment-Process Fattern Language
James O Coplien

w

z
"
I
o
3
&,
™

o e M . i

e e

Product
= Product
o N
=] Initiative
o
&
: Marketing
= Walkthrough
e
1]
o
E
=
=
o Implicd
= Requirement
o
S
=11]
-1
=¥
=]
=
=
o
=
=]
=
2
=
=

Task

Development
Waork
Quewe
Report
Work Completion
Queue Head room
Work Waork
Group Split
Development
Episode
Comparable Informal
Work Labor
Plan

Figure 1. Map of EPISODE patterns and their relations.

Programming

Recommitment

Meeting
Pair
Programming
Facilities
Motivated Work Development
Consolidation Integration Build
Proce ss Test Build
Check Repository Repository
Requirements
Walkthrough Refeoence
Data
Technical
Memo
Pair Crisis T
Programming = Programming ot
Episode Episode Browser
Programmin
EFF-:mdg £ Archil.{:ctl.ua] Tr.nnsp.nrt
Substitution Mutation
LI . . Test
Investigation Architectural Mutation Fixture
Context Spoof History
Spike .
Solution General Episode Waork Ficld
Solution Review Product Patch
Literal
Stub

Operations

Configuration
Script

Configuration

Hisiory

S P R
4 -t

eaPe et s ¢t

- 0.""

