
Architecture

with Agility

@KevlinHenney
kevlin@curbralan.com

If you think good
architecture is
expensive, try bad
architecture.

Brian Foote and Joseph Yoder
Big Ball of Mud

What do we mean

by software

architecture?

In the developed nations, the architect's responsibility is
to provide adequate blueprints, work with the
construction firm to make sure they are understood, work
with building inspectors to validate conformance to the
blueprints, then make formal changes to the blueprints as
new requirements are identified, and as construction
problems are discovered. No shortcuts in this workflow
would be excused or accepted.

This analogy applies precisely to software architecture….

Richard A Demers
"Software Architecture Needs Blueprints"

blueprint as a metaphor for a design or

plan is much overworked. If the

temptation to use it is irresistible, at least

remember that a blueprint is a

completed plan, not a preliminary one.

Bill Bryson

Troublesome Words

Architecture is the decisions that

you wish you could get right early

in a project, but that you are not

necessarily more likely to get them

right than any other.

Ralph Johnson

All architecture is design but not

all design is architecture.

Architecture represents the

significant design decisions that

shape a system, where significant

is measured by cost of change.

Grady Booch

Our position is that an

architectural definition is

something that answers

three questions:

 What are the structural

elements of the system?

 How are they related to

each other?

 What are the underlying

principles and rationale

that guide the answers

to the previous two

questions?

Architecture is a
hypothesis, that
needs to be proven
by implementation
and measurement.

Tom Gilb

empirical, adjective

 based on, concerned with, or verifiable by

observation or experience rather than theory

or pure logic

 pertaining to, or derived from, experience

 capable of being verified or disproved by

observation or experiment

Concise Oxford English Dictionary ∙ Oxford English Dictionary ∙ Merriam-Webster's Collegiate Dictionary

Habitability is the characteristic of

source code that enables programmers,

coders, bug-fixers, and people coming

to the code later in its life to

understand its construction and

intentions and to change it comfortably

and confidently.

Habitability makes a place livable, like

home. And this is what we want in

software — that developers feel at

home, can place their hands on any

item without having to think deeply

about where it is.

What is the

relationship

between process

and architecture?

Walking on water and
developing software
from a specification
are easy if both are
frozen.

Edward V Berard

Analysis Design Code Test

Analysis Design Code Test

Analysis Design Code Test

The "defined" process control model
requires that every piece of work be
completely understood. Given a well-
defined set of inputs, the same
outputs are generated every time.

Ken Schwaber
Agile Software Development with Scrum

The empirical process control model,
on the other hand, expects the
unexpected. It provides and exercises
control through frequent inspection
and adaptation for processes that are
imperfectly defined and generate
unpredictable and unrepeatable
results.

Ken Schwaber
Agile Software Development with Scrum

Design Design Design Design

Design

Design

Properly gaining control

of the design process

tends to feel like one is

losing control of the
design process.

Plan
Establish hypothesis,

goal or work tasks

Do
Carry out plan

Study
Review what has

been done against

plan (a.k.a. Check).

Act
Revise approach

or artefacts based

on study.

Deming's PDSA Cycle

questions and

expectations

answers

(and further

questions)

macro process

micro process

analysis

prototyping

design

coding

testing

nomic, noun & adjective

 a game in which changing the rules of the game is a

legal move and part of the game

 the original Nomic was invented by Peter Suber, but

the term is now generalised to describe any game that

has these properties

 political constitutions, legal systems, software

development processes and many games that children

spontaneously evolve over an afternoon of play are

nomic in nature

WordFriday

agile, adjective

 able to move quickly and easily

 having the faculty of quick motion

 easily moved

 nimble, active, ready

 having a quick resourceful and adaptable

character

Concise Oxford English Dictionary ∙ Oxford English Dictionary ∙ Merriam-Webster's Collegiate Dictionary

Continuous attention to technical
excellence and good design enhances
agility.

Simplicity--the art of maximizing the
amount of work not done--is essential.

The best architectures, requirements,
and designs emerge from self-
organizing teams.

Agile methods balance two things. One is the maximizing
of value creation. The other thing is the maximizing of
the chances of actually delivering something.

These two goals are sometimes in conflict!

Projects that dogmatically focus on stakeholder value
are working on the right things but still risk failing
completely.

The simple reason agile focuses on “working software” is
that this is one of the primary ways of insuring that the
system being worked on will actually work.

Niklas Bjørnerstedt
http://www.leanway.no/?p=280

People overvalue their knowledge

and underestimate the probability

of their being wrong.

0. Lack of Ignorance

1. Lack of Knowledge

2. Lack of Awareness

3. Lack of Process

4. Meta-Ignorance

Five Orders of Ignorance

Phillip G Armour

 What you can build is influenced and

constrained by how you build it...

 And vice versa

 Architectural thinking is based on

knowledge, which requires learning

 Learning occurs throughout a

software development project

 Making all the significant decisions

up front is not responsible

 Sustainable agility requires good

architecture; fast initial development

does not — these are often confused

What are some

properties of a

good architecture?

Firmitas

Utilitas

Venustas

Requirements come in many possible flavours, but are commonly cast
into two categories: functional and non-functional requirements. As a
label, it has to be admitted that non-functional is fairly lame. It is
unhelpfully vague and amusingly ambiguous.

Most things that are non-functional don’t work: washing machines, cars
and programs that are non-functional are broken. Also, by prefixing
functional requirements with non, other requirements seem to be
relegated to second- or third-class citizenship.

Requirements can be better and more fairly considered under the
headings of functional requirements, operational requirements and
developmental requirements.

Kevlin Henney
"Inside Requirements"

Functional

Operational

Developmental

Computer performance is characterised by the amount of useful
work accomplished by a computer system compared to the time
and resources used.

Depending on the context, good computer performance may
involve one or more of the following:

 Short response time for a given piece of work

 High throughput (rate of processing work)

 Low utilization of computing resource(s)

 High availability of the computing system or application

http://en.wikipedia.org/wiki/Computer_performance

More often than not,
performance tuning a system
requires you to alter code.
When we need to alter code,
every chunk that is overly
complex or highly coupled is a
dirty code bomb lying in wait
to derail the effort. The first
casualty of dirty code will be
your schedule.

Kirk Pepperdine
"The Road to Performance is Littered

with Dirty Code Bombs"

There are standard precautions that can

help reduce risk in complex software

systems. This includes the definition of a

good software architecture based on a

clean separation of concerns, data hiding,

modularity, well-defined interfaces, and

strong fault-protection mechanisms.

Gerard J Holzmann
"Mars Code", CACM 57(2)

http://cacm.acm.org/magazines/2014/2/171689-mars-code/fulltext

The connections between modules
are the assumptions which the
modules make about each other.

David L Parnas

The basic thesis [...] is that

organizations which design

systems [...] are constrained

to produce designs which are

copies of the communication

structures of these

organizations.

Melvin Conway

How Do Committees Invent?

We have seen that this fact

has important implications

for the management of

system design. [...] A design

effort should be organized

according to the need for

communication.

Melvin Conway

How Do Committees Invent?

Because the design that occurs

first is almost never the best

possible, the prevailing system

concept may need to change.

Therefore, flexibility of

organization is important to

effective design.

Fred Brooks

Everybody knows that TDD stands for Test Driven
Development. However, people too often concentrate
on the words "Test" and "Development" and don't
consider what the word "Driven" really implies. For
tests to drive development they must do more than
just test that code performs its required functionality:
they must clearly express that required functionality
to the reader. That is, they must be clear specifications
of the required functionality. Tests that are not written
with their role as specifications in mind can be very
confusing to read.

Nat Pryce and Steve Freeman
"Are Your Tests Really Driving Your Development?"

The difficulty in being able to write a test can be boiled
down to the two broad themes of complexity and
ignorance, each manifested in a couple of different ways:

 The essential complexity of the problem being solved.

 The accidental complexity of the problem being solved.

 Uncertainty over what the code should actually do.

 Lack of testing know-how.

Kevlin Henney
"A Test of Knowledge"

http://www.artima.com/weblogs/viewpost.jsp?thread=340839

A test is not a unit test if:

 It talks to the database

 It communicates across the network

 It touches the file system

 It can't run at the same time as any of your other unit

tests

 You have to do special things to your environment

(such as editing config files) to run it.

Tests that do these things aren't bad. Often they are worth

writing, and they can be written in a unit test harness.

However, it is important to be able to separate them from

true unit tests so that we can keep a set of tests that we

can run fast whenever we make our changes.

Michael Feathers

"A Set of Unit Testing Rules"

Necessarily not unit

testable, such as

interactions with

external dependencies

Unit testable in practice

Unit testable in theory,

but not unit testable in

practice

Sustainable development [...] implies

meeting the needs of the present

without compromising the ability of

future generations to meet their own

needs.

Brundtland Report of the World Commission

on Environment and Development

 An architecture needs to meet the

needs of those who require, who use

and who work on the product

 Requirements (and properties) are

not simply functional or "non-

functional"

 An architecture should be aligned

with both its market and its

development (and vice versa)

 An architecture should support the

changes that it experiences

How can an

architecture be

evolved and

grown?

You have to finish things —

that's what you learn from,

you learn by finishing things.

Neil Gaiman

Programming is a design

activity.

Jack W Reeves

"What Is Software Design?"

Coding actually makes sense more

often than believed. Often the

process of rendering the design in

code will reveal oversights and the

need for additional design effort. The

earlier this occurs, the better the

design will be.

Jack W Reeves

"What Is Software Design?"

In 1990 I proposed a theory, called

Worse Is Better, of why software would

be more likely to succeed if it was

developed with minimal invention.

It is far better to have an underfeatured

product that is rock solid, fast, and

small than one that covers what an

expert would consider the complete

requirements.

The following is a characterization of the

contrasting [the right thing] design philosophy:

 Simplicity: The design is simple [...].

Simplicity of implementation is irrelevant.

 Completeness: The design covers as many

important situations as possible. All

reasonably expected cases must be covered.

 Correctness: The design is correct in all

observable aspects.

 Consistency: The design is thoroughly

consistent. A design is allowed to be slightly

less simple and less complete in order to

avoid inconsistency. Consistency is as

important as correctness.

Here are the characteristics of a worse-is-better

software design:

 Simplicity: The design is simple in

implementation. The interface should be

simple, but anything adequate will do.

 Completeness: The design covers only

necessary situations. Completeness can be

sacrificed in favor of any other quality.

 Correctness: The design is correct in all

observable aspects.

 Consistency: The design is consistent as far

as it goes. Consistency is less of a problem

because you always choose the smallest

scope for the first implementation.

Implementation characteristics are foremost:

 The implementation should be fast.

 It should be small.

 It should interoperate with the programs

and tools that the expected users are

already using.

 It should be bug-free, and if that requires

implementing fewer features, do it.

 It should use parsimonious abstractions as

long as they don’t get in the way.

 An architecture should be considered

a set of hypotheses to be confirmed

 Architecture involves discovery (and

surprise)

 Architecture should be grown

iteratively and incrementally

 Start with a walking skeleton and

build onto that

 Focus on reducing scope rather than

reducing quality

 Aim for complete features rather

than "feature complete" development

How can change

and uncertainty be

handled?

Um. What's the name of the word for
things not being the same always. You
know, I'm sure there is one. Isn't there?

There's must be a word for it... the thing
that lets you know time is happening. Is
there a word?

Change.

Oh. I was afraid of that.

Neil Gaiman
The Sandman

The moment design becomes

important is when you want

to change something.

Kent Beck

Speculative Generality

Brian Foote suggested this name for a smell to
which we are very sensitive. You get it when
people say, "Oh, I think we need the ability to do
this kind of thing someday" and thus want all
sorts of hooks and special cases to handle things
that aren't required. The result often is harder to
understand and maintain. If all this machinery
were being used, it would be worth it. But if it
isn't, it isn't. The machinery just gets in the way,
so get rid of it.

Martin Fowler
Refactoring

You have a problem. You
decide to solve it with
configuration. Now you have
<%= $problems %> problems!

Dan North
https://twitter.com/tastapod/status/342935892207497219

Public APIs, like diamonds,

are forever.

Joshua Bloch

"Bumper-Sticker API Design"
http://www.infoq.com/articles/API-Design-Joshua-Bloch

interface Iterator
{
 boolean set_to_first_element();
 boolean set_to_next_element();
 boolean set_to_next_nth_element(in unsigned long n) raises(…);
 boolean retrieve_element(out any element) raises(…);
 boolean retrieve_element_set_to_next(out any element, out boolean more) raises(…);
 boolean retrieve_next_n_elements(
 in unsigned long n, out AnySequence result, out boolean more) raises(…);
 boolean not_equal_retrieve_element_set_to_next(in Iterator test, out any element) raises(…);
 void remove_element() raises(…);
 boolean remove_element_set_to_next() raises(…);
 boolean remove_next_n_elements(in unsigned long n, out unsigned long actual_number) raises(…);
 boolean not_equal_remove_element_set_to_next(in Iterator test) raises(…);
 void replace_element(in any element) raises(…);
 boolean replace_element_set_to_next(in any element) raises(…);
 boolean replace_next_n_elements(
 in AnySequence elements, out unsigned long actual_number) raises(…);
 boolean not_equal_replace_element_set_to_next(in Iterator test, in any element) raises(…);
 boolean add_element_set_iterator(in any element) raises(…);
 boolean add_n_elements_set_iterator(
 in AnySequence elements, out unsigned long actual_number) raises(…);
 void invalidate();
 boolean is_valid();
 boolean is_in_between();
 boolean is_for(in Collection collector);
 boolean is_const();
 boolean is_equal(in Iterator test) raises(…);
 Iterator clone();
 void assign(in Iterator from_where) raises(…);
 void destroy();
};

interface BindingIterator
{
 boolean next_one(out Binding result);
 boolean next_n(in unsigned long how_many, out BindingList result);
 void destroy();
};

The best route to

generality is through

understanding known,

specific examples and

focusing on their

essence to find an

essential common

solution. Simplicity

through experience

rather than generality

through guesswork.

Kevlin Henney

"Simplicity before Generality,

Use before Reuse"

We can find generality

and flexibility in trying

to deliver specific

solutions, but if we

weigh anchor and

forget the specifics too

soon, we end up adrift

in a sea of nebulous

possibilities, a world of

tricky configuration

options, long-winded

interfaces, and not-

quite-right abstractions.
Kevlin Henney

"Simplicity before Generality,

Use before Reuse"

Uncertainty is
an uncomfortable
position, but
certainty is an
absurd one.

Voltaire

When a design decision

can reasonably go one of

two ways, an architect

needs to take a step back.

Instead of trying to decide

between options A and B,

the question becomes

"How do I design so that

the choice between A and

B is less significant?" The

most interesting thing is not

actually the choice

between A and B, but the

fact that there is a choice

between A and B.

Kevlin Henney

"Use Uncertainty As a Driver"

We propose [...] that one begins

with a list of difficult design

decisions or design decisions

which are likely to change. Each

module is then designed to hide

such a decision from the others.

David L Parnas
"On the Criteria to Be Used in Decomposing Systems into Modules"

Stewart Brand, How Buildings Learn
See also http://www.laputan.org/mud/

Rate of change

Prediction is very difficult Prediction is very difficult,

especially about the future.

Niels Bohr




 



 

Scenario buffering by dot-voting possible changes and then readjusting dependencies

 Change is often the only constant

 Use past change to forecast future

change — look for the hot spots and

at defect density

 Use speculation and future

requirements to decide between

design alternatives

 Do not use speculation to add extra

complexity to the architecture

 Structure the system with respect to

rate of change and (un)certainty

What is technical

debt and how can

it be managed?

No design system is or

should be perfect.

As an evolving program is

continually changed, its

complexity, reflecting

deteriorating structure,

increases unless work is done

to maintain or reduce it.

Meir Manny Lehman

software entropy

spaghetti

code smell

software erosion

technical debt

mess

code decay

big ball of mud

code rot

Technical Debt is a wonderful metaphor developed by Ward
Cunningham to help us think about this problem. In this
metaphor, doing things the quick and dirty way sets us up with
a technical debt, which is similar to a financial debt.

Like a financial debt, the technical debt incurs interest
payments, which come in the form of the extra effort that we
have to do in future development because of the quick and
dirty design choice. We can choose to continue paying the
interest, or we can pay down the principal by refactoring the
quick and dirty design into the better design.

The metaphor also explains why it may be sensible to do the
quick and dirty approach.

Martin Fowler
http://martinfowler.com/bliki/TechnicalDebt.html

Shipping first time code is like going

into debt. A little debt speeds

development so long as it is paid

back promptly with a rewrite.

The danger occurs when the debt is

not repaid. Every minute spent on

not-quite-right code counts as

interest on that debt.

Ward Cunningham
http://c2.com/doc/oopsla92.html

A mess is not a technical debt.

A mess is just a mess.

Robert Martin
http://blog.objectmentor.com/articles/2009/09/22/a-mess-is-not-a-technical-debt

The useful distinction isn't between debt or
non-debt, but between prudent and reckless
debt.

Not just is there a difference between prudent
and reckless debt, there's also a difference
between deliberate and inadvertent debt.

Dividing debt into reckless/prudent and
deliberate/inadvertent implies a quadrant.

Martin Fowler
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Deliberate

Inadvertent

Reckless Prudent

A conscious decision
without proper
consideration of the
consequences

Accidental decision
based on ignorance
and without follow-on
adaptive behaviour

A conscious decision
based on consideration
of benefits and liabilities

Accidental decision
followed by discovery
that leads to learning
and change

balance

repayment

consolidation

runaway

default

write off
asset

spiralling

interest

liability

loan

restructure

principal

value

amortise

credit rating

Refactoring (noun): a change made to

the internal structure of software to

make it easier to understand and

cheaper to modify without changing its

observable behavior.

Refactor (verb): to restructure software

by applying a series of refactorings

without changing the observable

behavior of the software.

Martin Fowler

Refactoring

refactoring

rewriting

recovery

retrospection

remembering re-evaluation

repair

re-engineering

reduction
reaction

reuse

revision

A good designer isn't

afraid to throw away a

good idea.

 There is little excuse for introducing

reckless debt

 Awareness of technical debt is the

responsibility of all roles

 Consideration of debt must involve

practice and process

 Management of technical debt must

account for business value

 Perfection is not possible, but

understanding the ideal is useful

 For change hotspots, habitability is

always a consideration

The ability to simplify

means to eliminate the

unnecessary so that the

necessary may speak.

Hans Hofmann

