
Liz Keogh

@lunivore

http://lizkeogh.com

Write a
failing
test

Make it
pass

Refactor

New
behaviour

 public bool WaitFor(AutomationElementWrapper element,

 SomethingToWaitFor check,

 TimeSpan timeout, FailureToHappenHandler failureHandler,

 IEnumerable<AutomationEventWrapper> events)

 {

 Monitor.Enter(_waitingRoom);

 _triggeringEvent = null;

 DateTime started = DateTime.Now;

 var handlerRemovers = AddPulsingHandlers(events, element);

 bool checkPassed = true;

 while (!check(element, _triggeringEvent) &&

 DateTime.Now.Subtract(started).CompareTo(timeout) < 0)

 {

 checkPassed = false;

 Monitor.Wait(_waitingRoom, timeout);

 }

 Monitor.Exit(_waitingRoom);

 ClearPulsingHandlers(handlerRemovers);

 if (!checkPassed && !check(element, null))

 {

 failureHandler(element);

 return false;

 }

 return true;

 }

 public void ShouldWaitForEventsToOccur()

 {

 // Given an automation element

 _window = LaunchPetShopWindow();

 var combo = _window.Find<ComboBox>("petFoodInput");

 // When we cause a slow event on that element

 new Thread(() =>

 {

 Thread.Sleep(200);

 combo.Select("PetFood[Carnivorous]");

 }).Start();

 // And we wait for the event

 var eventOccurred = false;

 new Waiter().WaitFor(

 combo, (src, e) => {

 eventOccurred = true;

 return combo.Selection.Equals("PetFood[Carnivorous]");

 },

 new TimeSpan(0, 0, 1),

 (ex) => Assert.Fail(),

 new List<AutomationEventWrapper> {

 new StructureChangeEvent(TreeScope.Element)});

 // Then we should be notified when the event occurs

 Assert.IsTrue(eventOccurred);

 }

public void ShouldWaitForEventsToOccur()

{

// Given an automation element

 _window = LaunchPetShopWindow();

var combo =

 _window.Find<ComboBox>("petFoodInput");

// When we cause a slow event on that element

new Thread(() =>

 {

 Thread.Sleep(200);

 combo.Select("PetFood[Carnivorous]");

 }).Start();

// And we wait for the event

var eventOccurred = false;

new Waiter().WaitFor(combo, (src, e) =>

 {

 eventOccurred = true;

 return combo.Selection.Equals(

 "PetFood[Carnivorous]");

 }, new TimeSpan(0, 0, 1),

 (ex) => Assert.Fail(),

 new List<AutomationEventWrapper> {

 new StructureChangeEvent(

 TreeScope.Element)});

// Then we should be notified

// when the event occurs

Assert.IsTrue(eventOccurred);

}

ShouldWaitForEventsToOccur

Given an automation element

When we cause a slow event
 on that element

And we wait for the event

Then we should be notified

 when the event occurs.

Examples

Given a context

When an event happens

Then an outcome should occur

Arrange

Act

Assert

Given a context

When an event happens

Then an outcome should occur

Arrange

Given a context

When an event happens

Then an outcome should occur

Act

Given a context

When an event happens

Then an outcome should occur

Assert

An Example of an Example

Given Fred has bought a microwave

And the microwave cost £100

When we refund the microwave

Then Fred should be refunded £100.

Let’s TDD a person!

Write a
failing
test

New
behaviour

Feedback

Given a context

When an event happens

Then an outcome should occur

Context in
which they
act

Feedback

Given a context

When an event happens

Then an outcome should occur

Action they
take

Feedback

Given a context

When an event happens

Then an outcome should occur

Outcomes

Refactor

Existing
behaviour

and anchor
what you value!

Number 1 rule of
feedback:

Anchor what you value!

Write a
failing
test

Refactor

Existing
behaviour

and anchor
what you value!

New
behaviour

Write a
failing
test

Refactor

Existing
behaviour

and anchor
what you value!

Make it
pass

New
behaviour

Describe
desired

behaviour

Change
the

behaviour

The sandwich model

Start with something good

Say something bad

Finish with something good

The sandwich model done right

Anchor what you value

Describe desired behaviour

THEN change the behaviour

(People can do this bit themselves!)

What about
refactoring?

Cynefin

Obvious

Complicated Complex

Chaotic

With thanks to

David Snowden and Cognitive Edge

BDD and TDD work really well…

…hereish.

Whenever we do anything
new

we will make
discoveries

Cynefin
Trying

things

out Probe

Experiment

Refactoring code

Make it run

Get the thing
that’s new
working

Make it right

Make it
fast

Separate concerns

so you can
do more!

Good code

Focus on responsibilities and strengths

Is generous on input, strict on output

Is easy to understand and work with

You can trust clean code.

Refactoring people

Try it out

Get the thing
that’s new
working

Focus on
strengths

Use others for
the boring

stuff!

Separate concerns

so you can
do more!

Good people

Focus on responsibilities and strengths

Are generous in listening, honest in speaking

Are easy to understand and work with

You can trust good people.

Refactoring at scale

Horizon 3

Horizon 2

Horizon
1

Horizon 2
fights for budget
with Horizon 1.

Focusing on strengths
fights for time

with the boring stuff.

Focus on
strengths.

Get rid of the
boring stuff.

Anchor the behaviour you value.

In unfamiliar scenarios, create options –
make it safe-to-fail.

Change code; help people change themselves.

Some experiments should fail.

Do the things which make you
different.

