TDD
All the Things!
g Liz Keogh

@lunivore
http://lizkeogh.com

New
behaviour

Write a
failing

Make it
pass

Refactor

N—

public bool WaitFor (AutomationElementWrapper element,
SomethingToWaitFor check,
TimeSpan timeout, FailureToHappenHandler failureHandler,
IEnumerable<AutomationEventWrapper> events)

Monitor.Enter (waitingRoom) ;
null;

_triggeringEvent

DateTime started DateTime.Now;

var handlerRemovers = AddPulsingHandlers (events, element);

bool checkPassed = true;

while (!check(element, triggeringEvent) &&
DateTime.Now.Subtract (started) .CompareTo (timeout) < 0)

checkPassed = false;
Monitor.Wait (waitingRoom, timeout);
}
Monitor.Exit (waitingRoom) ;

ClearPulsingHandlers (handlerRemovers) ;

if (!checkPassed && !check(element, null))
{

failureHandler (element) ;

return false;
}

return true;

public void ShouldWaitForEventsToOccur ()
{
// Given an automation element
_window = LaunchPetShopWindow () ;
var combo = window.Find<ComboBox> ("petFoodInput");

// When we cause a slow event on that element
new Thread(() =>
{
Thread.Sleep (200) ;
combo.Select ("PetFood[Carnivorous]") ;
}) .Start () ;

// And we wait for the event
var eventOccurred = false;
new Waiter () .WaitFor (
combo, (src, e) => {
eventOccurred = true;
return combo.Selection.Equals ("PetFood[Carnivorous]");
i
new TimeSpan (0, 0, 1),
(ex) => Assert.Fail(),
new List<AutomationEventWrapper> {

new StructureChangeEvent (TreeScope.Element) });

// Then we should be notified when the event occurs

Assert.IsTrue (eventOccurred) ;

public void ShouldWaitForEventsToOccur ()
{

// Given an automation element
~window = LaunchPetShopWindow () ;

var combo =
~window.Find<ComboBox> ("petFoodInput") ;

// When we cause a slow event on that element
new Thread(() =>
{
Thread.Sleep (200);
combo.Select ("PetFood[Carnivorous]");
}) .Start () ;

// And we wait for the event
var eventOccurred = false;
new Waiter () .WaitFor (combo, (src, e) =
{
eventOccurred = true;

return combo.Selection.Equals (
"PetFood[Carnivorous]");

}, new TimeSpan (0, 0, 1),

(ex) => Assert.Fail(),
new List<AutomationEventWrapper> {

new StructureChangeEvent (

TreeScope.Element) });

// Then we should be notified
// when the event occurs

Assert.IsTrue (eventOccurred) ;

ShouldWaitForEventsToOccur

Given an automation element

When we cause a slow event
on that element

And we wait for the event
Then we should be notified
when the event occurs.

Examples

Given a context
When an event happens
Then an outcome should occur

Arrange

Act

Assert

When an event happens
Then an outcome should occur

AcCt

Given a context

<When an event happeD

Then an outcome should occur

Given a context
When an event happens

@an outcome should occur
\Assert

An Example of an Example

Given Fred has bought a microwave
And the microwave cost £100
When we refund the microwave
Then Fred should be refunded £100.

Let’s TDD a person!

New
behaviour

Write a
failing
test

Feedback ,
CoOWEEXt Lin

which they
/ act
< Given a context >

When an event happens

Then an outcome should occur

Feedback

Actlon tl/letd
take

Given a context /

<When an event happeD

Then an outcome should occur

Feedback

Given a context
When an event happens

@an outcome should occur
\ OUTCOMES

@

and anchor
what you value!

Existing
behaviour

Number 1 rule of

Anchor what you value!

New
behaviour

Write a

QQ}- p failing
c,’ test

‘v

N7

ZQ’I
I
Refactor
and anchor

what you value!

Existing
behaviour

New

behaviour v
Describe
o . | desired
§/ .
O behaviour
Xt
g,
<
1
Refactor
and anchor

what you value!

Existing /‘ \ /

behaviour

Change
the
behaviour

The sandwich model

Start with something good

Say something bad

Finish with something good

The sandwich model done right

Anchor what you value
Describe desired behaviour
THEN change the behaviour

(People can do this bit themselves!)

What about
refactoring?

Cynefin

Complex Complicated

BDD and TDD work really well...

...hereish.

Whenever we do anything
new
we will make
discoveries

Cynefin
Trying
things

OUl prope

Experiment

Refactoring code

-> Make it right \

/ S@pa vyote concering

Make it run
Get the thing
that's new
working Make it Z
fast
SO You can

oo nore!

Good code

Focus on responsibilities and strengths

Is generous on input, strict on output

Is easy to understand and work with

You can trust clean code.

Refactoring people

e
Try it out

Get the thing
that’s new
workLng

Focus on
strengths

Sepa yoate CONCErnNg

Use others for
the boring
stuff!

SO You can
do more!

/

‘This is 2 whole new ball game, Highly recommended,”
DR. STEWART D, FRIEDMAN
he Wotk/Lile lotegration Project, The Whaston Sohool

EXPANDED AND UPDATED
TIMOTHY FERRISS

Good people
Focus on responsibilities and strengths
Are generous in listening, honest in speaking
Are easy to understand and work with

You can trust good people.

GEOFFREY A. MOORE

ESCAPE

FREE YOUR COMPANY'S FUTU'RE

Refactoring at scale

—> Horizon 2 \

_—

Horizon 3

Horizon z
1

Horizon 2
fights for budget
with Horizon 1.

Focusing on strengths
fights for time
with the boring stuff.

Focus on
strengths.

Get rid of the
boring stuff.

Anchor the behaviour you value.

In unfamiliar scenarios, create options —
make it safe-to-fail.

Change code; help people change themselves.

Some experiments should fail.

Do the things which make you
different.

Liz Keogh
http://lizkeogh.com
@lunivore

