
Bare-knuckle web 

development
Agile Prague

Johannes Brodwall, Chief scientist

Exilesoft Global



• Philosophy

• Demonstration

• Ruminations



Part I:



The bare-knuckle 

philosophy



• Fear => Pair

• Hubris => Speed (and fun)



High impact with 

low ceremony



• Framework light

• Test-driven

• No calculators



Light on framework



Frameworks solve 80% 

of the job…



… and makes the rest 10 

times as hard



“Why did Hibernate 

suddenly slow down?”



“How do I make JBoss

behave the way I 

want?”



“How do I implement a 

custom SOAP header 

with JAX-WS?”



“Why did my dependencies 

not inject?”



“How do I do anything with 

Spring”



Test-driven



Fast feedback cycle



“I can see how TDD works 

for toy examples…”



“… but how can we use it 

when we have all these 

really complicated 

technologies???”



(Hint:
“all these complicated technologies”

I think I see your problem 
right here...)



Don’t use a 

calculator…



Part II:



Demo: Phonebook 

web app



Part III:



The real world



Build your app this 

way?



Probably not



Well, why not?



I am most likely 

insane



Understand what’s 

going on



«Don’t reinvent the 

wheel»





Are you using 

technology to solve 

your problems?



Or so that you don’t 

have to face your 

problems?



... yet.



Overheated brain



95 % test coverage



95 % test coverage

5-10 seconds



95 % test coverage

5-10 seconds

< 1 day to create 
«framework»



SOAP:
1. Construct XML

2. POST on HttpURLConnection



@Override
public String getCountryByIp(String ipAddress) {

Document soapRequest =
soapElement("S:Envelope",

$("S:Body",
wsxElement("wsx:GetGeoIP", 

$("wsx:IPAddress", ipAddress))));
Document soapResponse

endpoint.postRequest(getSOAPAction(), soapRequest);
return $(soapResponse).xpath("/Envelope/Body/*")

.xpath("GetGeoIPResult/CountryName").text();
}



No friction



Thinking in tests



1.



Guiding test/

Web tests/

Acceptance test/

Usage Flow test



2.



Get the infrastructure 
to work => 

separate out 
responsibility



3.



Fine grained tests for 

internal logic



Shallow, then deep



Shallow, then deep

(without changing 

tests)



Conclusion:



YAGNI



No calculator 

until…



Don’t use a framework 

you couldn’t have 

written yourself



Thank you

jbr@exilesoft.com

http://johannesbrodwall.com

http://exilesoft.com/exilee

http://twitter.com/jhannes

mailto:johannes.brodwall@steria.no
http://johannesbrodwall.com/
http://exilesoft.com/exilee
http://twitter.com/jhannes

